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Abstract: Sandcrete blocks are the primary material used in Nigeria as partition walls and sometimes as load-bearing walls. The quality 

of the constituent materials, the curing methods, and the mixing methods influence quality. However, the quality of blocks is usually 

evaluated using the compressive strength, fB. However, different studies have shown no unique fB value for block due to high inherent 

variability. The uncertainty associated with fB is reportedly evaluated using a traditional statistical method that requires a significant 

amount of test results. Extensive data are usually not available due to the practical challenges in preparing the compression test sample. 

Therefore, this study utilizes the Markov chain Monte Carlo (MCMC) Bayesian probabilistic approach to solve local testing data 

challenges and the uncertainty inherent in the test results to ensure the block's quality. The framework begins with developing a general 

probability model called the likelihood function to evaluate the marginal posterior probability based on a limited number of fB data. The 

mean and coefficient of variation (COV) values of the MCMC generated sample and the fB's direct measurement were 0.94 N/mm2 and 

13.10%, and 1.03 N/mm2 and 19.20%, respectively. The difference between the samples' average values from the MCMC approach and 

the direct measurement is 0.09 N/mm2, representing a relative difference of 8.77%. On the other hand, the COV difference is 6.10%, 

showing a considerable variation of 31.80%. The slight difference between the average values indicates that the mean values agree well, 

inferring that the probabilistic MCMC-based method performs excellently. It can be concluded that integrating prior knowledge, limited 

compression test data, and Bayesian inference methods into the design process can contribute to a more reliable structure even with higher 

allowable stress. Finally, engineers can logically integrate factors such as the degree of uncertainty in the design of walls or structures. 
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1. INTRODUCTION 

The code of practice, also known as standards, provides a useful guide for the engineers and designers to ensure that the 

structures' integrity and stability are achieved. These standards' intended purpose also includes protecting the public from 

building collapse and encouraging innovative, low-cost, and sustainable materials.  

Many standards are currently available for use in concrete, bricks, and sandcrete blocks related structural applications. 

Most of these standards were developed majorly, considering only their indigenous materials and local weather conditions, 

which may not suit any other countries adopting it. One such measure is the Nigerian Industrial Standard: Standard for 

Sandcrete Blocks (NIS 87 [1]), which provides a guide for producing sandcrete blocks of acceptable quality. This standard 

describes different types and classes of sandcrete in terms of shapes, sizes, and compressive strength. The lowest strength 

class requirements are 2.5 N/mm2 and 3.45 N/mm2 for individuals and a minimum of five blocks, respectively. 

However, more than 90% of Nigeria's physical infrastructures were constructed using sandcrete blocks and, this has been 

estimated to cover about 22% of the total cost of buildings [2]-[4]. Hence, there has been some concern of non-compliance 

to this standard. The indications that the compressive strength results are below the minimum strength requirement have 

resulted in the continued collapse of buildings in major economic cities such as Lagos, Ibadan, Port Harcourt, and Abuja. 

However, this could result from government workers' inaptitude to enforce the standard, or the standard requirements are not 

economical for the manufacturers. In other words, more strength requirements will incur more materials, which will, in turn, 

increase the price of the sandcrete blocks in the market.  

Based on the literature, [2][5], all the randomly tested samples in all parts of Nigeria does not conform to the 
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recommendation of NIS 87 [1]. The quality of blocks in terms of texture and strength were usually determined by visual 

inspection combined with the touching and kicking. Visual inspection is good at assessing the surface properties, but it may 

not be suitable for evaluating its strength. Achieving higher compressive strength is often accompanied by improving 

constituents' quality, production methods, curing methods, delaying sales, and possibly more expensive [6]. These 

observations suggested that there could be a need for stricter regulation for the manufacturers or that the standard would also 

have to be amended if the existing strength requirements are not appropriate for all parts of the country. The situation could 

also be that both problems exist simultaneously, in which some manufacturers are producing expensive blocks that are not 

fit for intended purposes.  

Because of heavy reliance on the test results of sandcrete blocks, there is a need to provide a greater assurance that the 

results are a reliable indication of the strength of blocks the sample represents. One of this paper's objectives is to propose 

modifications in the acceptance criteria for sandcrete blocks and guide the producer in complying with these criteria with a 

uniform degree of assurance [7]. Therefore, it is expected that the block manufacturers will meet the requirement of this 

lowest strength class. 

However, when there is no possibility of a direct compression test to obtain fB to design load-carrying masonry walls, the 

engineers may utilize the minimum strength recommended in various NIS 87 [1]. Multiple studies have shown that there is 

no threshold identifier of fB due to high variability. The Identified sources of uncertainties in the fB are summarized in Figure 

1. The chance is expressed in this study as the variability due to environmental influence, which is usually unnoticed while 

the assignable results from man, machine, and raw material used for making blocks. Hence, this leads to how much 

uncertainties are responsible for the low compressive strength compared to the standard's minimum requirements since fB is 

inherently variable. 

This paper developed a probabilistic method to characterize fB. In other words, to obtain its mean, standard deviation, and 

full probabilistic distribution by integrating the prior information about fB using available limited data. Also, to assess how 

well the blocks standard NIS 87 [1] works to guide sandcrete blocks' production and discuss the possible change. The 

framework begins with modeling the variability in fB following normal distribution and then following the likelihood model's 

formulation to determine the occurrence probability based on the limited data from the Northcentral, Nigeria. This method 

is different from the previous one that needs many fB to draw the comparison. 

 

Figure 1: Sources of uncertainties associated with the quality of sandcrete blocks. 

 

Figure 2: Quality control framework for sandcrete blocks. 
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2. PROBABILISTIC QUALITY CONTROL METHOD FOR SANDCRETE BLOCKS 

In this paper, blocks quality is expressed as the blocks' target mean strength with low uncertainty (i.e., low variability). 

However, quality is a significant factor that cannot be undermined in building construction. It is a function of the method 

used in the production process and constituent materials [8]-[13]. The blocks' quality has been observed to be affected by the 

quality of materials used, batching of aggregates, mixing constituent materials, molding, curing, transportation and storage, 

mix ratio, and water content [14]. Figure 2 summarizes the proposed aspects of the quality standard required in block 

production. 

In the production of sandcrete blocks, there are inherent variabilities in the properties of the materials used and the 

production methods. For instance, the quality of cement supplied, the grading, and particle shape of the aggregates vary. 

These variations may be observed within the batching process, production, curing, and testing of specimens, even if they are 

conducted following standard recommendations. These uncertainties result in variation of strength from manufacturer to 

manufacturer and within a batch of each manufacturer. Hence, this makes the block strength challenging to assess, 

influencing the structures' quality and integrity. Therefore, all these uncertainties can be modeled into the fB as:   

 ( ),B Bf f   = +   (1) 

where fB(μ,σ) is the predicted strength; ε
 
is the prediction error, which is modeled as a zero-mean Gaussian random variable 

with variance σ2 [15][16]. It is assumed that the prediction errors follow independent and identically distributed (i.i.d.) 

distributions [17].   

Sandcrete blocks comprise different constituent materials (i.e., heterogeneous) such as cement, sand, and water. Therefore, 

its properties vary spatially and show inherent variability within the population of block samples. This variability of the block 

properties can be modeled as a random variable that follows the normal distribution:  

 ( )2
~ ,B B B BF N f     (2) 

where FB is the probability density function (PDF). Hyper-parameters determine the distribution: mean, μB, and standard 

deviation, σB of fB. 

 
B =  and 

B =   (3) 

The normal distribution is used in this study to model the fB because of its successful applications in the literature and its 

mathematical convenience [15][18][19]. 

In engineering practice, the fB of sandcrete blocks are usually performed discretely. Therefore, the N data points can be 

considered weakly correlated or even independent [15]. However, D = [
( )i

Bf , I = 1,2,3,…,Ns] can be treated as Ns independent 

realization of Gaussian random variable fB with a mean μB and a standard deviation σB. Then the likelihood function is 

expressed as 

 
( )( ) ( )( )2 2

, ~ ,
i i

B B B B B Bf p f      (4) 

The Bayesian approach incorporates an engineer's judgment or experience about the fB before the measurement can be 

considered. However, since the compressive strength model in Eq. (1) is not entirely known, one can represent the modeling 

error (i.e., prediction error) as the prior random variable (μB, σB) ~ p(μB, σB). Then mutually independent prior random 

variables can be considered as μB ~ p(μB) and σB ~ p(σB).  

The prior joint information can be expressed as: 

 ( ) ( ) ( ),  B B B Bp p p   =     (5) 

The prior joint uncertainty Eq. (5) can be improved by Bayesian data analysis using experimental measurements. When 

there is no general prior knowledge on μB and σB, p(μB, σB) can be represented by a non-informative uniform distribution and 

explicitly expressed as:  
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 (6) 

where μmin and μmax are the minimum and maximum values of μB, respectively; σmin and σmax are the minimum and 

maximum values of σB, respectively. They can be estimated following their physical meaning and typical ranges reported in 

the literature. 

Therefore, the Bayesian identification approach mainly aims to calculate the posterior probability density function (PDF) 

p(θ = [σ, μ]|D), as in Eq. (7), of the uncertain model parameter vector θ conditional on a given set of experimental data D. 

 ( | ) ( |,  , ,) ( )p cp p     =D D   (7) 

where c is a normalizing constant such that the integration of the PDF over the parameter space is equal to unity; p(σ, μ) 

is a prior PDF of model parameters defined Eq. (4), which allows the engineer's knowledge and experience to contribute to 

the model updating process. p(D|μ,σ) is the likelihood of obtaining the set of experimental data, D, conditional on the 

uncertain model parameters σ, and μ.   

Bayesian identification is accomplished by conditioning the prior distribution p(μB, σB) = p(μB) p(σB) on the measured data

http://www.ajerd.abuad.edu.ng/


ABUAD Journal of Engineering Research and Development (AJERD)  ISSN: 2645-2685 

Volume 3, Issue 2 

 

www.ajerd.abuad.edu.ng/  30 

( )i

Bf . Substitute Eqs. (4) and (5) into Eq. (7), gives the posterior predictive model distribution as in Eq. (8) 

 
( )( ) ( ) ( )( ), , ,

1

si i

B B B B B B B B

N
p f p p f

i
     

=
 (8) 

The posterior predictive PDF for the fB as defined in Eq. (8), usually cannot be obtained explicitly, not only because the 

posterior PDF may have a complex format, but also because it requires the evaluation of integrals over the space of the model 

parameters, which is not analytically available and cannot be computed straightforwardly by numerical integration. Thus, it 

is proposed in this paper to evaluate and represent the posterior PDF of fB defined in Eq. (8) by statistical samples drawn 

from the posterior PDF via Markov chain Monte Carlo (MCMC) simulation [17]. One commonly implemented Monte Carlo 

simulation method for drawing samples from the target PDF is the Metropolis-Hastings (MH) algorithm ([20][21]. The 

MCMC simulation generates a sequence of fB such that the complete chain converges to the target PDF. The transition from 

one state to the next occurs by random perturbation of the current state, determined by the proposal distribution. The MCMC 

algorithm creates a chain of samples whose statistical distribution can approximate the target PDF by either accepting or 

rejecting the proposed samples from the parameter space. When the proposed sample is rejected, the previous sample is used 

in the current state. The procedures of the MCMC-based Bayesian estimation algorithm are briefly summarized in the 

flowchart in Figure 3.  

 

 
 

Figure. 3: Flowchart for the implementation of the proposed MCMC-based Bayesian technique. 

 

3. REAL DATA – ILLUSTRATIVE EXAMPLE 

The approach developed in this study is applied for the characterization of fB using limited test samples (24 compressive 

strength values collected from blocks production sites in Idah, Kogi State, Northcentral part of Nigeria, ref. [10]. The 

validation was done by comparing the distribution and statistics of the samples generated by MCMC simulation with the 24 

fB data from the test data reported by ref. [10], as shown in Table 1. In real-life engineering practice, test data of fB of blocks 

is generally limited due to limited resources, time, and degree of machining process required to prepare samples for 

compression test.  

Also, Table 2 summarizes the prior information on the fB used in this study. The prior knowledge is adopted from the 

previous engineering experience reported in the literature. This prior knowledge is relatively uninformative, and it can be 

taken as a joint uniform distribution of μB and σB with respective minimum values of μB,min and σB,min and individual maximum 

values of μB,max, and σB,max. The ranges of fB have been reported in the literature [11][22]. 

The standard deviation can be estimated using the six-sigma rule as follows. 
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Six-sigma rule is adopted to calculate the standard deviation of data when only a range of the data is available, like the 

range [0.31 N/mm2, 2.5 N/mm2] given in Table 2. The maximum standard deviation of fB is therefore, estimated as σB,max = 

(μB,max - μB,min)/6 = (2.5 – 0.31)/6 = 0.365 N/mm2. On the other hand, fB' minimum standard deviation is taken as σB,min = 0 

N/mm2 because of the standard deviation's non-negative physical meaning. This set of ranges (i.e., μB [0.31 N/mm2, 2.5 

N/mm2] and σB [0 N/mm2, 0.365 N/mm2] is taken as the prior information. 

 

Table 1: Compressive test result of sandcrete blocks collected from Northcentral of Nigeria (after Aderibigbe et al. [10]). 

Specimen No Compressive 

strength, fB 

Specimen No Compressive 

strength, fB 

Specimen No Compressive 

strength, fB 

B1 1.12 B9 1.02 B17 0.74 

B2 1.26 B10 0.88 B18 0.80 

B3 1.38 B11 0.83 B19 0.99 

B4 0.91 B12 0.96 B20 1.31 

B5 0.63 B13 1.37 B21 1.24 

B6 0.85 B14 1.08 B22 0.93 

B7 1.22 B15 1.04 B23 0.96 

B8 1.12 B16 1.02 B24 0.92 

 
Table 2: Prior information of the compressive strength, fB of sandcrete block 

Parameter (N/mm2) Prior information 

Minimum mean, μB,min 0.31 

Maximum mean, μB,max 2.50 

Minimum standard deviation, σB,min 0 

Maximum standard deviation, σB,max 0.365 

 

4. RESULTS AND DISCUSSION 

The detailed development of the Markov chain Monte Carlo (MCMC)-based Bayesian characterization has been presented 

in section 2. The proposed method is adopted in this section. Hence, this method can handle a limited number of measured 

data points. The process can also handle a case where repeated evaluations of the likelihood function p(D|μ,σ), in the 

probabilistic optimization search is computationally prohibitive. The prior distribution is a systematic way of incorporating 

initial knowledge about the uncertain fB in terms of σ and μ, into the identification process. It is subjective because people 

with different experiences may use various prior, leading to broader ranges of the solution in cases where the lesser amount 

of prior information is available. The proposed Bayesian method is essential to update prior knowledge about the uncertain 

model parameters and obtain the posterior probability density functions (PDFs). 

Figure 4 shows a scatter plot of 30,000 MCMC samples that were generated for fB. It is clear from the figure that the 

parameter space has one important region (i.e., a high PDF value). The figure also includes the mean, 5% percentile, 95% 

percentile marks at 0.935 N/mm2, and about 0.737 N/mm2 and 1.142 N/mm2. Generally, it would be observed that the 

generated samples plot sparsely below 0.737 N/mm2. It was further observed that from 0.737 N/mm2 upward, the samples 

plot near and again become sparsely located at the upper region of the plot after it reached 1.142 N/mm2. About 1,462 samples 

fall below 0.737 N/mm2. This value represents 4.87% of the total population. Also, 1,633 samples fall above 1.142 N/mm2, 

representing 5.44% of the total population. About 26,905 out of the total 30,000 samples representing about 89.68% are 

within the range of 0.737 N/mm2 and 1.142 N/mm2. The probability density function (PDF) of the posterior samples was 

concentrated in the most probable model neighborhood since only one important region is in the parameter space of interest. 

The posterior samples of fB clearly show the difference from the prior samples (assumes to be uniform) since they are 

concentrated around a point.  

With the generated MCMC samples, the marginal posterior probability density function (PDF) of fB is calculated, as shown 

in Figure 5 (solid black line). Simultaneously, the values of the 24 direct measurements by compression test were plotted 

with an open square. It is clear from the figure that fB's marginal PDFs are close to Gaussian distribution but not exactly 

Gaussian distributions. It is also clear from the figure that the spreading of the distribution fB decay relatively fast from the 

optimal value (i.e., the most probable value), showing that the associated posterior uncertainty is relatively high. Therefore, 

this means that there exists a finite number of most probable models. In order words, there is only one solution point led to 

fB, which can reproduce the subset of measured test data taken from the complete set of measured compressive test data. The 

reason for these relatively high uncertainties lies in the fact that the data is inherently uncertain due to the quality of material 

used for making blocks, curing methods, and mixing techniques. Hence, this shows the importance of using the MCMC-

based method in identifying the fB. 

To provide more information about the results' interpretation, conventional statistics are performed on the samples 

generated to estimate the posterior mean and coefficient of variation (COV) of fB. The most probable value (MPV) of fB is 
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summarized in the second column of Table 3, together with the estimated posterior COV. It is clear from the table that the 

estimated fB has a large COV. Hence, this may result from higher sensitivity of the fB to the limited number of data, that is, 

larger observability of fB in data. Consequently, this may also result from modeling error and the variability in the measured 

data caused by environmental conditions and measurement error. The table also includes the values of the mean and COV 

of the direct measurement of fB from the sandcrete blocks manufacturers as 1.03 N/mm2 and 19.20%, respectively. The 

difference between samples' mean values from the MCMC samples approach and direct measurement by laboratory tests is 

0.09 N/mm2, representing a relative difference of 8.77%. 

 

 
Figure 4: Scatter plot of the Bayesian equivalent samples of fB. 

 

 
Figure 5: Probability density function (PDF) for compressive strength, fB. 

 

On the other hand, the COV difference is 6.10%, representing a relative difference of 31.80%. The small difference 

between the mean values indicates that the mean agrees well, suggesting that the MCMC-based Bayesian method performs 

satisfactorily. The difference in COV is relatively large. Hence, this might be attributed to the limited number of fB data from 

direct measurement.  

Figure 6 is the cumulative distribution function (CDF) plot of the fB, estimated from the MCMC samples generated, and 

the 24 direct measurement result reported in Aderibigbe et al. [10]. The CDF of the samples generated from the MCMC 

approach is plotted using a solid line, and it plots closely with the CDF of direct compression test indicated by open squares. 

There is good agreement between the CDFs of fB from the direct measurement by compression tests and the MCMC samples. 

Hence, this shows that the information contained in the samples generated through the MCMC approach is consistent with 

the one obtained from the direct measurement of fB. 
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Finally, fB samples generated from the MCMC approach contain updated information from the prior information and a 

limited number of data. It was observed that the prior knowledge includes previous engineering experience, engineering 

judgment from past similar works, and literature. Based on the initial and measured data from the compression test, the 

MCMC approach generates samples sufficient for a reasonable fB statistical distribution estimate. This probabilistic 

characterization of sandcrete blocks fB usually requires many data from manufacturer or laboratory tests, which could be 

expensive, time, and energy-consuming or even impossible because of equipment costs. The proposed full probabilistic 

distribution of blocks fB could help the design and construction of the masonry wall.  

 

Table 3: Summary of the estimated statistics of compressive strength fB. 

Estimated 

statistics 

MCMC generated 

sample of fB 

24 compressive 

strength test results 

Difference 

(N/mm2) 

Relative 

difference (%) 

Mean (N/mm2) 0.94 1.03 0.09 8.77 

COV (%) 13.10 19.20 6.10 31.80 

 

 
Figure 6: Validation of the CDF of compressive strength from MCMC generated samples. 

 

5. CONCLUSION AND RECOMMENDATION 

Based on the limited data samples, this study puts forward the Markov chain Monte Carlo (MCMC)–based Bayesian 

approach method to characterize the compressive strength of the sandcrete block. MCMC was used to ensure that the 

proposed method can be applied even when the problem is unidentifiable. The study also successfully incorporated prior 

knowledge, including previous engineering experience and engineering judgment from the past similar works and literature. 

The values of the means and coefficient of variations (COVs) of Bayesian equivalent sample and direct measurement of fB 

were 0.94 N/mm2 and 13.10% and; 1.03 N/mm2 and 19.20%, respectively. The difference between samples' mean values 

from the MCMC samples approach and direct measurement is 0.09 N/mm2, representing a relative difference of 8.77%. On 

the other hand, the COV difference is 6.10%, representing a relative difference of 31.80%. The small difference between the 

mean values indicates that the mean values agree well, suggesting that the MCMC-based Bayesian method performs 

satisfactorily. 

Most producers of concrete in Nigeria do not have the quality control ability to have small standard deviations. To this 

end, it is suggested that producers without adequate records start with a standard deviation of 0.12 N/mm2. If a consecutive 

result of 30 tests is available, the standard deviation should be based on the 30 straight tests. This statistical quality control 

method provides a scientific approach to understanding the variations encountered on-site to provide proper tolerance to 

allow for inevitable variations. Whenever the producer is convinced that the lower standard deviation can be achieved, that 

new value should be adopted for mix design. Therefore, it can be recommended that the NIS 87 [1] specifications for 

sandcrete blocks could be improved by requiring that the strength of any sandcrete blocks shall not fall below the specified 

strength (fB) by more than 0.015 N/mm2. 
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