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Abstract: The research examines the use of 7th order polynomials to model the trajectory of an industrial manipulator. Using a joint 

space scheme, a pick and place trajectory planning is conducted in this paper. Using only the Septic Polynomial, this research proposes 

a unique method for obtaining zero starting and endpoint velocities and accelerations with decreased jerk. This is to suppress errors in 

trajectory tracking and unwanted resonance from being induced on the mechanical structure.  Whenever the acceleration of a robot arm 

changes, the corresponding jerk function (the time derivative of acceleration) will exhibit numerous spikes. Therefore, any approach that 

permits discontinuous acceleration functions to be employed in robot joint-space trajectory development is inappropriate and should be 

avoided. As a result of their discontinuity in acceleration and hence endless jerk spikes, the linear velocity with polynomial blends and 

the third-order polynomial becomes problematic when adopted for industrial operations. The strategy employed in this research 

involves the addition of two "dummy" points in between the start and end points; whilst simultaneously solving the boundary and initial 

conditions at those points. Utilising the MATLAB robotics toolbox, the trajectory was evaluated using a PUMA 560 serial manipulator. 

Based on this model-setup, the septic trajectory is established to be quicker than the Linear Segment with Polynomial Blend (LSPB) 

variation. Also, infinite values and discontinuities of acceleration at the end points were addressed appropriately by adopting the septic 

function.  

 
Keywords: Discontinuity, septic polynomial, trajectory generation, jerk, PUMA 560.  

 
1. INTRODUCTION 

In robotics, a crucial need is to have algorithms that convert high-level human task descriptions into low-level 

commands which robots can correctly interpret. The planning of robotic trajectories is crucial in the safety and precision of 

industrial manipulators. The software development of industrial manipulators has two phases involved; trajectory planning 

and control. The former describes the temporal history of the manipulator’s parameters such as the position, velocity, 

acceleration, and jerk, while the latter converts these measured values into input control signals that are sent into actuators 

during task execution to mitigate specific deviations. 

As a vital facet of a robot control system, considerable attention has been devoted to trajectory planning by researchers. 

One of the most critical aspects in robotics is trajectory planning. As a result, selecting path with optimal execution time, 

energy consumption, jerk, gripping forces for a robot is a more crucial task than finding an obstacle-free path [1]. The 

fundamental task involves gripping, movement and discharge of an object relative to a certain location, thereby providing a 

restriction to the robot configuration throughout the task execution. 

Due to their greater flexibility and simplicity of location in the context of facility design, industrial robots are viable 

substitutes for specialised machine tools to a considerable extent. Industrial robots are regarded as a pillar of competitive 

production, which attempts to combine high productivity, quality, and flexibility at the lowest possible cost [2]. In terms of 

cost, an estimated savings of 20-50 percent compared to typical Computer Numerical Control (CNC) machines has also 

been widely documented [3].  

Inherent in robot manipulators is their great versatility and flexibility ensuring their suitability to different tasks. The 

proliferation of robotic manipulators has also been attributed to its effective response to dynamic changes in consumer 

behaviours and adaptation to global competitiveness [2]. Researchers investigate, examine, and suggest numerous optimal 

techniques and robot settings that offer enhanced geometric accuracy and product quality to assure the general performance 

of the robot manipulator across the whole production cycle. The development of trajectory planning algorithms for 

industrial manipulator is a pivotal area in robotics engineering.  

Trajectory planning generally involves the calculation of certain required motion sequences for the manipulator's 

actuation system. Planning smooth trajectories in a timely, energy efficient and smooth manner is thus crucial in most 

robotic applications in industrial environments. Natural vibrations caused by the actuators on the robot structure should 

always be kept to a minimum. This also includes the selection of appropriate motion sequence, since deviations from the 
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planned trajectory may cause vibrations in the manipulator as a result of the generation of discontinuous applied force and 

the non-rigid effects of the inherent in the manipulator structure. As a result, it may be advantageous to incorporate 

trajectories with variable smoothness[4].  

2. LITERATURE REVIEW 

As regards industrial manipulators, quite a number of trajectory generation techniques to achieve some objective 

functions have been proposed in literature [5]. Each of these techniques possesses unique characteristics that makes them 

suited to some particular class of tasks. The issue of trajectory planning has gained importance because, once the 

displacement and time frame are specified, the selection of a manipulator's motion strategy from start to finish has 

significant implications for actuator sizing, torque, resonance on the structure, and the specified movement's trajectory 

following capabilities. Consequently, it is necessary to properly investigate the multitude of possible point-to-point 

trajectories for a particular system. As such, for specified boundary conditions like the start and end positions, velocities 

and accelerations, the trajectory profile has a significant influence on the maximum values at each specified via-point [5]. 

Figure 1 succinctly describes different categories and classification of trajectory types [6]. 

 

 
 

Figure 1:  Trajectory Types [6] 

 

2.1 Types of Trajectory Functions 

For most robotics research, the most common basic trajectories functions utilised are the polynomial and trigonometric 

based functions. The mathematical formulations are briefly described in the next sections with relevant works adopting 

such techniques briefly mentioned.  

 

2.2 Polynomial Trajectories 

Fundamentally, robot movement is specified by designating a start and end time instant 𝑡0 𝑎𝑛𝑑 𝑡𝑓 , together with 

constraints on position, velocity and acceleration at 𝑡0 𝑎𝑛𝑑 𝑡𝑓. The task then becomes one of mathematics, which is to find 

a function: 

𝑞 =  𝑞(𝑡), 𝑡 ∈  [𝑡0, 𝑡𝑓]                                 (1) 

that satisfies all of the requirements that have been specified. Using a polynomial function, this resolution may be gotten 

by: 

𝑞(𝑡) =  𝑎0  +  𝑎1𝑡 + 𝑎2𝑡
2 + . . . + 𝑎𝑛𝑡

𝑛                 (2) 

in which the 𝑛 + 1 coefficients 𝑎𝑖 are calculated in order to satisfy the end-point constraints. The polynomial’s degree n 

is determined by the set of requirements that must be met as well as the requisite "smoothness" of the resultant motion (in 

this case, a smooth motion). In practice, odd-degree polynomial is employed because of the even order resulting from the 

set of boundary conditions. 

Generally, for linear functions of polynomial of degree one, at 𝑡 =  𝑡0, 𝑡𝑓, The velocity is really not continuous at these 

points, so the acceleration is infinite. Acceleration is zero in the middle of the trajectory, but it rises sharply at the ends. So, 

in industrial practice, trajectories of this type are not used. 
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2.3 Cubic Polynomial Trajectory 

When both the position and velocity values at 𝑡0 and 𝑡𝑓 (𝑞0, 𝑞𝑓 , and 𝑣0, 𝑣𝑓 respectively) are specified, four requirements 

must be met. As a result, a polynomial of third degree must be utilised. 

𝑞(𝑡) =  𝑎0  +  𝑎1(𝑡 −  𝑡0) +  𝑎2(𝑡 −  𝑡0)
2  +  𝑎3(𝑡 −  𝑡0)

3,         𝑡0  ≤  𝑡 ≤  𝑡𝑓        (3)  

where the four parameters 𝑎0, 𝑎1, 𝑎2, 𝑎3 are derived from the provided conditions 

𝑎0  =  𝑞0  
𝑎1  =  𝑣0  

𝑎2  =
3ℎ − (2𝑣0 + 𝑣𝑓)𝑇

𝑇2
                       (4) 

𝑎3  =
−2ℎ+(𝑣0 + 𝑣𝑓)𝑇

𝑇3
  

 
where 𝑇 =  𝑡𝑓  −  𝑡0 is the time duration. 

ℎ =  𝑞𝑓 − 𝑞0 is the displacement 

 

Using the approach outlined above, it is quite straightforward to calculate a trajectory with constant velocity through a 

sequence of n locations. Overall motion is split into 𝑛 − 1  segments, each of which is a separate motion. These segments 

link the points 𝑞𝑘  and 𝑞𝑘+1  at time 𝑡𝑘, 𝑡𝑘+1  and have the starting and end velocities, respectively, of 𝑣𝑘 , 𝑣𝑘+1 . Then, 

equations 𝑎0𝑘, 𝑎1𝑘 , 𝑎2𝑘 , 𝑎3𝑘. as seen in equation 4 are used for each of these segments to define the 4(𝑛 −  1) parameters. 

Because they provide continuous velocity and acceleration profiles along the desired trajectory, cubic splines are 

frequently used. Furthermore, the parameters are simple to compute, and huge perturbations of the positional variable and 

its time derivatives are avoided [7].  

Adoption of cubic splines can be seen in the work of Chettibi [8]. Joint trajectories were represented in the research 

using clipped cubic spline functions with nodes spread evenly throughout the time scale. This approach was justified by the 

well-known qualities of cubic spline functions, namely their second-order continuity and their lower order, which 

significantly inhibits oscillations and enables a swift computation of extremum values between two adjacent nodes. The 

difficulty becomes the transfer time and the location of cubic spline nodes when modelling joint motions. 

Another work [9] examined the approximation of trajectories using third, fourth, and fifth-degree polynomial functions. 

Additionally, comparisons and tests using an industrial robot arm were shown. Increases in the degree of the polynomial 

have no effect on the approximation, and the cubic approximation takes less time to compute than other high-degree 

functions. Additionally, they observed the distinction between time-bounded and jerk-bound systems.   The work 

concluded that when the acceleration is low (as in the case of large-radius curves, such as the line and circle), the time-

bounded third order polynomial trajectory is preferable, and vice versa. As such for robot manipulator applications, the 

third-degree polynomial trajectories provide good performance and simplicity. 

Bharadwaj et al. [10] employed the cubic B-spline to create a smooth trajectory using the minimax approach to 

minimise the jerk value. Additionally, Li et al. [11] employed B-spline curves to generate robot trajectories. They stated 

that B-splines are preferable to Bézier curves because they allow for local change without altering the overall trajectory 

and because the degree of a polynomial does not depend on a set of control points. Additionally, adopting this 

method makes possible numerous and robust geometric operation methods, such as spline subdivision and spline merging, 

that enable flexible manipulation of robot trajectories. 

Shi and Zeng [12] also employed a cubic B-spline in joint space to plan a route across the joint angle's data points which 

was derived by Cartesian space planning. 

The trajectory for pick-and-place operations was generated using Cubic spline by Li et al.[13]. Cubic B-spline curves 

were used in this work to produce zero starting and end velocities and accelerations. Two dummy points were added to the 

path nodes and the linear system is maintained in a manner similar to solving the velocity or acceleration boundary 

conditions on their own. Cubic spline curves, according to the authors, are more computationally efficient and have less 

local support than higher-order B-splines. 

In general, a third-degree polynomial-based trajectory across the positions 𝑞0. . . , 𝑞𝑛 has continuous position and velocity 

profiles, but discontinuous acceleration. While this trajectory is often "smooth," acceleration discontinuities might have 

unwanted consequences on the links and joints and on inertial loads in particular applications. This occurs most frequently 

when time savings are desired and hence high values of acceleration and velocity are specified, or when the actuation 

system has significant design elasticities. 

 

2.4 Quintic Polynomial Trajectory 

While cubic polynomials are widely used to create smooth trajectory profiles, they do not yield a constant jerk profile 

and so cannot be used for high-level trajectory planning. Higher order polynomials are necessary to obtain a smoother jerk 

profile. Quintic polynomials are the lowest order polynomials that assure the smoothness of the jerk profile at each via-

point sequence, while a quadratic polynomial defines the associated jerk profile. [14]. To generate continuous acceleration 

trajectories, it is important to specify appropriate beginning and terminal values for the acceleration in addition to the 
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position and velocity criteria. A fifth-degree polynomial must be utilised due to the six boundary conditions (position, 

velocity, and acceleration) [5]: 

𝑞(𝑡) =  𝑞0 + 𝑎1(𝑡 − 𝑡0) + 𝑎2(𝑡 − 𝑡0)
2 + 𝑎3(𝑡 − 𝑡0)

3 + 𝑎4(𝑡 − 𝑡0)
4 + 𝑎5(𝑡 − 𝑡0)

5       (5) 

with the conditions 

𝑞(𝑡0) =  𝑞0, 𝑞(𝑡𝑓) =  𝑞𝑓 𝑞˙(𝑡0) =  𝑣0, 𝑞¨(𝑡0) = 𝛼0 , 

𝑞˙(𝑡𝑓) =  𝑣𝑓   𝑞¨(𝑡1) = 𝛼𝑓 . 

With this situation, by defining 𝑇 =  𝑡𝑓 –  𝑡0, the polynomial coefficients are obtained. 

 

𝑎0  =  𝑞0  
𝑎1  =  𝑣0  
𝑎2 = 𝑎0/2   

𝑎3  =
1

2𝑇3
 [20ℎ −  (8𝑣1  + 12𝑣0)𝑇 −  (3𝑎0  −  𝑎1)𝑇

2]             (6) 

𝑎4  =  
1

2𝑇4
 [−30ℎ + (14𝑣1  + 16𝑣0) 𝑇 + (3𝑎0  −  2𝑎1)𝑇2]  

𝑎5  =
1

2𝑇5
 [12ℎ −  6(𝑣1  +  𝑣0)𝑇 + (𝑎1  −  𝑎0)𝑇2].  

 

 

Song et al. [15] modelled the whole manipulator trajectory planning problem  using a quintic polynomial interpolation 

technique, which included robotic arm kinematics and dynamics. The paper developed a trajectory planning technique for a 

six degree-of-freedom (DoF) manipulator that considerably improves the manipulator's trajectory tracking performance 

and motion stability. 

Additionally, Zhao et al. [16] simulated the deflagration of an explosive ordnance disposal (EOD) robot job in joint 

space using the quintic polynomial interpolation approach. The trajectory planning approach of quintic polynomial 

interpolation guaranteed the manipulator moved smoothly and operated with great precision. 

Wang et al.[17] proposed a trajectory planning strategy that hybridises cubic polynomials with quintic B-splines 

interpolation for path planning  and trajectory generation respectively. This resulted in a decrease in execution time and 

energy utilisation, as well as an increase in stability performance while performing point-to-point motion operations. 

Bézier curves have control points that affect the entire curve; however, a uniform B-spline curve avoids these 

shortcomings while maintaining the Bézier curve's continuous and smooth characteristics. Only the B-spline curve's local 

trajectory is altered when control points are changed; the remaining segment pathways remain unaffected [18]. 

Additionally, standard interpolation curves are incapable of adequately representing complicated curves. If precision is to 

be ensured, the order of the polynomial curve must be increased significantly, resulting in a significant computing burden. 

In comparison to lower-order B-spline curves such as the cubic B-spline curve, the quintic B-spline curve can give more 

adjustable dynamical characteristics, but at the expense of more processing resources and lengthy computations.  

To summarise their research, Zhang et al.[19] discovered that the quintic B-spline curve outperforms the cubic B-spline 

curve in terms of acceleration performance, resulting in a reduction in the system's angular acceleration error and an 

improvement in system resilience. 

 

2.5 Trigonometric Trajectories 

These trajectories present non-null continuous derivatives for any order of derivation in the interval (𝑡0, 𝑡1). However, 

these derivatives may be discontinuous in 𝑡0 and 𝑡1. Generally, an 𝑚 − 𝑡ℎ order trigonometric spline function 𝑦(𝑡) with a 

total of 2𝑚 constraints in each of the n closed arcs [𝑡𝑖−1, 𝑡𝑖](𝑖 = 1,… . , 𝑛) 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 [7]: 

𝑦(𝑡) = 𝑦𝑖(𝑡)    𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]        (2.12) 

𝑤ℎ𝑒𝑟𝑒 𝑦(𝑡) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 

𝑦𝑖(𝑡) = 𝑎𝑖,0 + ∑ (𝑎𝑖,𝑘 cos 𝑘𝑡 + 𝑏𝑖,𝑘 sin 𝑘𝑡) + 𝑎𝑖,𝑚 sin𝑚(𝑡 − 𝛾𝑖)
𝑚−1
𝑘=1            (7) 

𝛾𝑖 = ∑
𝜏𝑖𝑗

2𝑚

2𝑚−1
𝑗=0                           (8) 

Note that 𝜏𝑖𝑗  are the values of t where 𝑦𝑖  (𝑡) has a constraint applied. 

 

One of the primary benefits ascribed to trigonometric splines is the avoidance of large overshoots, despite the fact that 

the function's continuity can be imposed up to a high order. For instance, adopting a fourth-order trigonometric spline 

ensures the continuity of the jerk function and greatly reduces overshoots in comparison to quartic algebraic splines that 

meet the same criteria. In general, the position function between two knots of an m-order spline may be found by setting 

the values of the derivatives up to the m-1 order at the knots. A key theoretical benefit of trigonometric splines over 

algebraic splines is the ability to fix these values (based on the motion job) without significantly increasing the trajectory's 

overshoots. The use of trigonometric splines, initially described by Schoenberg [20] has also been advocated by Simon and 

Isik [21] for trajectory planning of robot manipulators. They emphasised the possibility of generating joint trajectories with 

constant velocity, acceleration, and jerk, as well as minimum overshoot. Additionally, the computing cost is minimal, and 

the spline parameters may be selected using an optimisation process to minimise an objective function. In any event, 

certain things remain unclear and warrant more examination. For instance, the effect of the trigonometric splines' order on 
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the total outcome must be analysed. Indeed, Simon and Isik's conclusions analyse only fourth order splines, implying that 

the jerk function's continuity is imposed. Chiddarwar and Babu [22] also used the trigonometric spline coefficients as 

optimisation variables in their study, where the KUKA-Kr robot's trajectory was simulated using trigonometric spline 

coefficients. They contended that interpolation through trigonometric splines has a sound neighbourhood property, i.e., that 

if the value of a node in the input sequence is modified, only the two splines that share that node as a common point should 

be recalculated, not the entire trajectory. Also, trigonometric splines maintain the jerk's continuity. However, in practice, 

the jerk may be discontinuous, even though its limiting typically results in fewer tracking errors and partially prevents 

resonant excitation. Additionally, the suggested techniques include the assumption that the spline intervals are same, which 

is a significant assumption in real industrial automated cells [7]. 

 

2.6 Combination of Elementary Trajectories 

Often, an appropriate motion profile may be derived by combining the functions that characterise the constituent 

trajectories.  As a result, in addition to a continuous function with continuous derivatives up to a specified order, additional 

features such as minimum values for the maximum acceleration or jerk may be imposed on the trajectory. This requires the 

creation of trajectories by incorporating the functions in the most effective sequence. 

1)   Linear Trajectory with Parabolic Blends:  Combining linear trajectories with parabolic blends produces the typical 

trapezoidal velocity profiles characterised with a positive displacement, 𝑞1  >  𝑞𝑜. The acceleration in the first section is 

positive and constant, meaning that the velocity is a linear function of time and the position is a parabolic curve. In the 

second segment, acceleration is zero, velocity is constant, and position is a linear function of time. The last segment has a 

continuous negative acceleration, a linear decrease in velocity, and a degree two polynomial function for position. For 

these trajectories, the acceleration phase's duration 𝑇𝑎 is often considered to be equal to the deceleration phase's duration 𝑇𝑑 

[7]. The general case where 𝑡0 ≠  0, the trajectory (in position) can be formulated by equation 9 as described in [5]: 

 

𝑞(𝑡) =

{
 
 

 
 𝑞𝑜 +

𝑣𝑣

2𝑇𝑎
(𝑡 − 𝑡0)

2,                        𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇𝑎

𝑞𝑜 + 𝑣𝑣 (𝑡 − 𝑡0 −
𝑇𝑎

2
),                        𝑡0 + 𝑇𝑎 ≤ 𝑡 ≤ 𝑡1 − 𝑇𝑎

𝑞𝑜 −
𝑣𝑣

2𝑇𝑎
(𝑡1 − 𝑡)

2,                        𝑡1 − 𝑇𝑎 ≤ 𝑡 ≤ 𝑡1

           (9) 

where: 

𝑡0 𝑎𝑛𝑑 𝑡1 are the initial and final times   

𝑇𝑎 =  the acceleration phase duration. 

𝑇𝑑 = is the deceleration phase. 

𝑣𝑣=desired velocity at the end of the acceleration phase.  

𝑞0 𝑎𝑛𝑑 𝑞1 are initial and final joint displacements. 

 

 While parabolic blends are capable of controlling limitless acceleration and deceleration at the trajectory's start and end 

points, they are unable to regulate the instantaneous velocity and acceleration in the trajectory's midpoint [23]. Alshahrani 

et al. [24] employed a Stanford-type spherical manipulator for trajectory planning in their work. Cycloidal trajectories, 

Cubic segment, simple harmonic, bang-bang parabolic blend and 3-4-5 polynomial were all employed as functions. Total 

energy consumption is determined for each trajectory in relation to travel time. It is worth noting that the simple harmonic 

functions, bang-bang parabolic blends and cubic segment all begin and end with finite acceleration values. These limited 

acceleration levels will result in jerky motion, which is undesirable in robotics. Cycoidal motion and 3-4-5 polynomial 

functions, on the other hand, begin and end with null acceleration, resulting in smooth motion. If the path duration is 

significant, cycloid or 3-4-5 polynomial trajectories should be adopted. The cubic trajectory would be an optimal choice if 

energy usage is a primary consideration and travel time is limited. 

2)  Linear Trajectory with Polynomial Blends: It is feasible to generate movements with smoother profiles than 

trapezoidal velocity trajectories by using polynomial functions with a degree greater than two to define the blends between 

the linear segments. To design an nth-degree linear trajectory with polynomial blends, this approach may also be applied to 

trajectories via a succession of points, as well as to trajectories that cross via-points. A formal description of this technique 

is given also by Biagiotti and Melchiorri[5] where the points 𝑞0, 𝑞1  denote initial and final positions, the 

acceleration/deceleration period 𝑇𝑎  = 2𝑇𝑠 and the total displacement time 𝑇 =  𝑡1  −  𝑡0. 
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Figure 1: Linear trajectory with polynomial blends [5] 

 

With reference to Figure 2: 

• Compute the expression 𝑞𝑟(𝑡) of the line joining the points (𝑡0  +  𝑇𝑠, 𝑞0)and (𝑡1  − 𝑇𝑠, 𝑞1). 
• On this line, compute the values 𝑞𝑎  =  𝑞𝑟(𝑡0  + 𝑇𝑎)and 𝑞𝑏  =  𝑞𝑟(𝑡1  − 𝑇𝑎).  
• Assign the values 

 �̇�(𝑡0) =  �̇�(𝑡1) = 0,    �̈�(𝑡0 ) =  �̈�(𝑡1) = 0 𝑎𝑛𝑑 �̈�(𝑡0 +  𝑇𝑎) = �̈�(𝑡0 −  𝑇𝑎) = 0 

• Compute the velocity in the segment (𝑡0  +  𝑇𝑎)  ÷ (𝑡1  −  𝑇𝑎)𝑎𝑠 𝑣𝑐  = (𝑞𝑏  −  𝑞𝑎)/(𝑡1  −  𝑡0  −  2𝑇𝑎).  
The trajectory may then be calculated in two acceleration/deceleration phases using equations for polynomials of degree 

n (for example, n = 5) and in the constant velocity segment using equation 10. 

{

𝑞(𝑡) = 𝑣𝑐𝑡 + 𝑞𝑎
�̇�(𝑡) = 𝑣𝑐  

�̈�(𝑡) = 0.

                        (10) 

 

3)  Double S Velocity Trajectory: The velocity motion profile of a trapezoidal (or triangular) object exhibits a 

discontinuous acceleration. As a result, this trajectory may place undue strain and stress on the mechanical system, which 

may be damaging or result in undesirable vibrational effects. It is feasible to use double S velocity profiles, which are 

extremely prevalent in industrial usage. As a consequence, a more sophisticated motion profile must be established, such as 

using a profile that is continuous with linear piecewise acceleration. The resulting velocity is constructed using linear 

segments connected through parabolic mixes. This trajectory is also referred as the double S or bell trajectory based on the 

shape of the velocity profile, which consists of seven different sections with continuous jerk[5].  

Because the jerk has a step profile, the stress and vibrational impacts induced by this motion profile on the kinematic 

structure are decreased in comparison to trapezoidal velocity trajectories with an impulsive jerk profile. It is presumptive 

that: 

  𝑗𝑚𝑖𝑛 = −𝑗𝑚𝑎𝑥 , 𝑎𝑚𝑖𝑛 = −𝑎𝑚𝑎𝑥 , 𝑣𝑚𝑖𝑛  =  −𝑣𝑚𝑎𝑥  such that  𝑗𝑚𝑖𝑛  𝑎𝑛𝑑 𝑗𝑚𝑎𝑥  denote the minimum and maximum value of 

the jerk respectively.  

With these parameters in mind, it is desirable to construct a trajectory that hits the greatest (lowest) values for jerk, 

acceleration, and velocity whenever feasible, in order to reduce the overall duration T (minimum time trajectory). To keep 

things simple, the parameter 𝑡0  =  0 is assumed. The following are the boundary conditions: 

 Initial and final accelerations 𝑎0, 𝑎1 set to zero.  

 Generic initial and final values of velocity 𝑣0, 𝑣1.  

Three phases can be distinguished:  

• Acceleration phase, 𝑡 ∈  [0, 𝑇𝑎], where the acceleration has a linear profile from the initial value (zero) to the 

maximum and then back to zero. 

• Maximum velocity phase, 𝑡 ∈  [𝑇𝑎, 𝑇𝑎  + 𝑇𝑣], with a constant velocity. 

• Deceleration phase, 𝑡 ∈  [𝑇𝑎  + 𝑇𝑣 , 𝑇], being 𝑇 =  𝑇𝑎  + 𝑇𝑣  + 𝑇𝑑 , with profiles opposite with respect to the 

acceleration phase. 

The trajectory is determined given the limitations on the maximum values of jerk, acceleration, and velocity, as well as 

the desired displacement ℎ =  𝑞1 − 𝑞0 . However, it is required to first determine whether or not a trajectory can be 

executed. Indeed, there are multiple instances when a trajectory cannot be calculated given the limitations. For instance, if 
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the required displacement h is insignificant in comparison to the difference between the beginning and final velocities 

𝑣0 𝑎𝑛𝑑 𝑣1, it may not be attainable. 

In their research, Devi et al.[25] devised an approach for obtaining the ideal trajectory planning for a robot manipulator 

with the least amount of jerk. In this work, an industrial robot with six DoF, the PUMA-560, was used to implement the 

optimisation method. To accomplish the smooth trajectory, this study used a synchronised S-curve. When the same set of 

joint variables is employed, the execution time and jerk value achieved using the S-curve trajectory are contrasted to the 

ones generated utilising Cubic spline trajectory. The S-curve trajectory is preferable in terms of runtime and jerk quality. 

4)  Piecewise Polynomial Trajectory: In some circumstances, defining a trajectory as nothing more than a cluster of 

polynomial pieces may be beneficial. It is critical to set an appropriate number of criteria prior to computing the trajectory 

under these situations, including boundary conditions, via-point locations, velocity and acceleration continuity. 

For instance, when an industrial robot performs pick-and-place activities, it may be advantageous to have movements 

with extremely smooth start and finish phases. In this scenario, a motion profile derived by connecting three polynomials 

can be used. 𝑞𝑙(𝑡), 𝑞𝑡(𝑡), 𝑞𝑠(𝑡)  denoting lift-off, travel, set (or drop) down segments: 

𝑞𝑙(𝑡) =⇒  4𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  
𝑞𝑡(𝑡) =⇒  3𝑟𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  
𝑞𝑠(𝑡) =⇒  4𝑡ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 

This trajectory, dubbed 4-3-4, is calculated by assigning five plus four plus five making a total of fourteen parameters, 

necessitating the definition of 14 conditions. If 𝑡0, 𝑡1  are the start and end instants, 𝑡𝑎, 𝑡𝑏  are the "switching" instants 

between polynomial segments, and 𝑞0, 𝑞𝑎 , 𝑞𝑏 , 𝑞1  are the relative position values, the requirements for computing the 

parameters are as follows. 

6 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠        

{
 

 
𝑞1(𝑡0) = 𝑞0,

𝑞𝑙(𝑡𝑎) = 𝑞𝑡(𝑡𝑎) = 𝑞𝑎
𝑞𝑡(𝑡𝑏) = 𝑞𝑠(𝑡𝑏) = 𝑞𝑏

𝑞𝑠(𝑡1) = 𝑞1

  

4 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠                  𝑞𝑙̇ (𝑡0) = �̇�𝑠(𝑡1) = 0,    �̈�𝑙(𝑡0) = �̈�𝑠(𝑡1) = 0,     

3 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛     

{
 

 
�̇�𝑙(𝑡𝑎) = 𝑞�̇�(𝑡𝑎),

𝑞�̈�(𝑡𝑎) = 𝑞�̈�(𝑡𝑎)

�̇�𝑡(𝑡𝑏) = �̇�𝑠(𝑡𝑏)

�̈�𝑡(𝑡𝑏) = �̈�𝑠(𝑡𝑏)

  

 

2.7 Comparison of Previous Works with Present Research 

As a result, the trajectory planning approach described in this research employs a single seventh-order polynomial in 

generating a multi-joint joint-space trajectory for smooth motion between two via-points. contains eight unknowns that 

must be resolved by the specification of eight constraints. The 7th order polynomial is used rather than a higher order 

polynomial because, while theoretically simple, this approach is wasteful computationally and may result in numerical 

inaccuracies for polynomial orders larger than seven. 

 

3. METHODOLOGY  

3.1 Overview of Technique  

The generated trajectory is well suited to offline trajectory planning as opposed to an online scheme because many 

industrial pick and place processes are repetitive which justifies the adoption of the scheme. Offline planning results in a 

globally optimal trajectory smoothness due to the anticipation of abrupt turns and second-order continuity throughout the 

trajectory[26].  The trajectory planning algorithm utilises geometrical, Kino dynamic constraints to construct the joint 

trajectory, which is expressed as a time sequence of position, velocity, and acceleration[22]. When calculating the 

trajectory, it is important to take into consideration physical limitations of the actuator because they define peak value of 

velocity and joint acceleration. Due to these constraints, maximum values of velocity and acceleration are established in 

practice and used to determine time parameters, or the robot's motions between via-points. 

In this research, following a kinematic inversion of the specified geometric path described in the task space, the 

trajectory planning was performed in the joint space of the robot. As such, the joint trajectory was generated by using 

septic interpolating functions, with the specified velocity and acceleration constraints not violated. As such, the trajectory 

could be more conveniently modified to suit the requirements while operating in the joint space[22]. This research utilises 

a single polynomial to generate a trajectory that traverses two way-points for a pick and place task. Core issues such as 

problem formulation and trajectory modelling using a 7th order polynomial, acceleration and jerk discontinuity, 

computational simplicity and some limitations of this technique are further explained in the next section. 
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3.2 Steps in Pick and Place Trajectory Generation 

The trajectory generation issue is defined in this section. These issues take into consideration both the velocity boundary 

conditions and the acceleration limitation. By adhering to the velocity and acceleration constraints, it is anticipated that 

created trajectories will exhibit the following qualities. 

i. The pick-and-place operation includes the starting position (take point), transfer position (lift or leave point), 

unload position (drop point) and target position (placement point), with specified boundary conditions and 

continuous conditions. 

ii. MATLAB Robotics Toolbox is used to obtain the four position points of any group of pick-and-place operations 

at the end of the PUMA560 robot, and obtain the position of each joint through the inverse solution. The version 

used is the Robotics Toolbox for MATLAB (release 10.1). 

iii. In addition, assuming that the joint velocity and acceleration of the starting position and the target position are all 

set to 0, the motion times of the three segments are 2 seconds, 4 seconds and 3 seconds respectively. The solution 

to the set of linear equations to solve the unknown coefficients of the trajectory are gotten. 

iv. The coefficients are used to generate the trajectory function of the position, velocity and acceleration of each joint 

of PUMA560. 

v. These trajectories are inputted into PUMA560 model to simulate the execution of the pick and place trajectory, 

while observing and analysing any difference between the execution results of the three-segment quintic trajectory. 

vi. Plots of the position, velocity and acceleration of the trajectory are obtained, and it is compared with the three-

segment quintic trajectory. 

 

3.3 PUMA 560 Robot Model 

The PUMA 560 robot was a game changer in the robotics age, and has been extensively applied in a broad variety of 

industries. While more powerful robots have found use in business in recent years, PUMA 560 has found a new role in 

teaching, in part because it is the most mathematically specified robot. Its straightforward structure makes it possible to 

design new controllers and test novel controlling algorithms for educational and scientific objectives. There are several 

manufacturers on the market today, but the robots manufactured employ controllers that are not available for study and 

education. It is critical in educational processes designed for students to be able to assess various parameters (position, 

error, torque, etc.) from control algorithms used on the controller in real time and compare them to results from other 

simulations and reference books. As a result, institutions and colleges worldwide have created novel control strategies and 

controllers for the PUMA 560 robot [27]. The PUMA 560 robot is a member of the anthropomorphic arm family. The 

basic arrangement resembles a two-link planar arm with an added rotation about the plane's axis. The methodologies given 

in this thesis have been validated and tested on the PUMA 560 robot. PUMA 560 is a six DoF robot with all joints being 

revolute.  

For simulation purposes, Professor Peter Corke's Robotics Toolbox for MATLAB/Simulink[28] was employed. The 

toolbox contains a detailed description of the mathematical model of the robot PUMA 560. The solution approach involves 

modelling the robot as a consequence of generalised coordinates passing through a complex task space that has been 

discretised in cartesian coordinate system. This greatly simplifies the trajectory generation process, which trajectory 

between the robot's starting and end configurations, with the aid of two through locations. This model is constructed using 

rigid links coupled by kinematic joints. Siciliano et al. [6] outlined the forward and inverse mathematical model of the 

robot PUMA 560. 

 

3.4 Trajectory Modelling using Septic Polynomial 

A trajectory can be specified by providing a succession of intermediate places (via-points) in Cartesian space that the 

end-effector must travel through. Thus, a matched sequence of angles for each joint to assume at defined locations is 

constructed. To link these points sequences with a guarantee of velocity, acceleration, and jerk continuity across the 

trajectory, an appropriate order of splines is employed. As a result, the nonlinear effects generated by direct kinematics 

pose a difficulty. This complicates anticipating the execution of a planned movement in the joint space in the cartesian 

space [29]. 

Analytically, polynomials, exponential, trigonometric functions, and others may be used to characterise the basic 

trajectory. The septic polynomial is utilised in this thesis. The "smoothness" of the resulting motion and the number of 

conditions necessary determine the selected polynomial's degree. Polynomial functions have odd degrees because the set of 

boundary conditions is generally even, hence the degree could be 3rd, 5th, 7th, and so on. A seventh-degree polynomial is 

used in this case. 

In the seventh-degree polynomial planning trajectory. There are just eight conditions that are known a priori which are 

the joint position, velocity and acceleration of the initial and final positions, and joint position of the two intermediate 

points. The polynomial of seventh degree contains eight unknown coefficients. It prevents the trajectory from being 

segmented as is the case with piecewise polynomials. This facilitates the usage of a single polynomial. 

Splines are an excellent alternative if the robot must precisely pass the intermediate spots. By selecting an appropriate 

spline order, the continuity of velocity, acceleration, and jerk inputs across the whole trajectory is ensured.  
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All beginning and end values for all joints are known in this example, with the start and end angular velocity and 

acceleration being both zero. It is worth noting that 𝑡0  and 𝑡𝑛  denote the start and end times, respectively. 

Additionally,, 𝑡1 𝑎𝑛𝑑 𝑡2 represent the vis-point timings. The initial and ultimate joint variables of the robot arm are denoted 

by 𝑞0 𝑎𝑛𝑑 𝑞𝑛. The angular velocity and acceleration thus represents the joint variable's first and second order derivatives. 

Suppose we have a sequence 𝒒 = [𝑞0, 𝑞1, . . . , 𝑞𝑛] of via-points that the joint is required to traverse at time instant 𝒕 =
[𝑡0, 𝑡1, . . . , 𝑡𝑓], respectively. Spline duration is represented as 𝑇𝑖: = 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 1, . . . , 𝑛. Conversely, velocity at initial 

time instant 𝑡0 is 0 and at time 𝑡𝑛 is n. Thus, a set of polynomial functions can be written as:  

𝑞𝑖(𝑡) = 𝑎𝑖𝑡
7 + 𝑏𝑖𝑡

6 + 𝑐𝑖𝑡
5 + 𝑑𝑖𝑡

4 + 𝑒𝑖  𝑡
3 + 𝑓𝑖𝑡

2 + 𝑔𝑖𝑡 +  ℎ𝑖          (11) 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, . . . , 𝑛,                                                 
�̇�𝑖(𝑡) = 7𝑎𝑖𝑡

6 + 6𝑏𝑖𝑡
5 + 5𝑐𝑖𝑡

4 + 4𝑑𝑖𝑡
3 + 3𝑒𝑖 𝑡

2 + 2𝑓𝑖𝑡 + 𝑔𝑖          (12) 

�̈�𝑖(𝑡) = 42𝑎𝑖𝑡
5 + 30𝑏𝑖𝑡

4 + 20𝑐𝑖𝑡
3 + 12𝑑𝑖𝑡

2 + 6𝑒𝑖𝑡 + 2𝑓𝑖          (13) 

It is possible to specify eight constraints. These are six boundary conditions and two via-point constraints.  

Boundary conditions: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑞(𝑡0) =  𝑞0,          𝐹𝑖𝑛𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑞(𝑡𝑛) =  𝑞𝑛 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = �̇�(𝑡0) =  𝑣0,       𝐹𝑖𝑛𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  �̇�(𝑡𝑛) =  𝑣𝑛 , 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = �̈�(𝑡0) =  𝛼0, 𝐹𝑖𝑛𝑎𝑙𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  �̈�(𝑡𝑛) =  𝛼𝑛. 
Via-Point constraints: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡1(𝑙𝑖𝑓𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝑞(𝑡1) =  𝑞1,       
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡2(𝑢𝑛𝑙𝑜𝑎𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 𝑞(𝑡2) =  𝑞2,     

 

A single 7th order polynomial is needed for eight constraints. To solve for the eight undetermined polynomial 

coefficients, eight linear equations must be established. 

Equations 11 to 13 may be solved by substituting the boundary conditions for zero velocity and acceleration at the 

beginning and end of the trajectory. 

By defining 𝑇 =  𝑡1  −  𝑡0 and ℎ =  𝑞1  −  𝑞0, the coefficients 𝑎𝑖 , 𝑖 = 0, . . . , 7 are: 

ℎ =  𝑞0 
𝑔 = 𝑞0̇ 

𝑓 =
�̈�0
2

 

 

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
1 𝑡1 𝑡1

2 𝑡1
3 𝑡1

4 𝑡1
5 𝑡1

6 𝑡1
7

1 𝑡2 𝑡2
2 𝑡2

3 𝑡2
4 𝑡2

5 𝑡2
6 𝑡2

7

1 𝑡𝑛 𝑡𝑛
2 𝑡𝑛

3 𝑡𝑛
4 𝑡𝑛

5 𝑡𝑛
6 𝑡𝑛

7

0 1 2𝑡𝑛 3𝑡𝑛
2 4𝑡𝑛

3 5𝑡𝑛
4 6𝑡𝑛

5 7𝑡𝑛
6

0 0 2 6𝑡𝑛 12𝑡𝑛
2 20𝑡𝑛

3 30𝑡𝑛
4 42𝑡𝑛

5]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
ℎ
𝑔
𝑓
𝑒
𝑑
𝑐
𝑏
𝑎]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑞0
�̇�0
�̈�0
𝑞1
𝑞2
𝑞𝑛
�̇�𝑛
�̈�𝑛]
 
 
 
 
 
 
 

           (14) 

 Equation 14 is in the form of a set of linear systems of equation represented by 𝑴𝑪 =  𝑸 ; 
The coefficients are solved by multiplying the inverse of the joint variable with  𝐶 = 𝑀−1𝑄 . The remaining coefficients 

are solved using MATLAB’s linear algebra and symbolic toolbox. 

4. RESULTS AND DISCUSSIONS 

An AMD A4-9120 RADEON R3, 4 Computer core system, 2.20 GHz processor with 4 Gigabyte of RAM and a 64-bit 

windows 10 operating system was used. All simulations were done using MATLAB R2018a. The version 10.1 of the 

MATLAB robotics toolbox was used. 

4.1 Joint Variable of the Specified Cartesian Points 

Using Table 4.1, one can see how the robot's end-effector should move in order to complete the job at hand. End-effectors 

must travel from the start node to the destination node through the lift and drop points in order to complete the job. For the 

specific example used in generating the trajectory, the points specified in the cartesian coordinate (
𝑋 
𝑌 
𝑍
) are given as: 

 

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑡𝑎𝑘𝑒 𝑝𝑜𝑖𝑛𝑡) =  (
− 0.5 
0.5 
− 0.5

) ; 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑙𝑖𝑓𝑡 𝑜𝑟 𝑙𝑒𝑎𝑣𝑒 𝑝𝑜𝑖𝑛𝑡)  =  (
− 0.5 
0.5 
 0.3

) 

  

𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑑𝑟𝑜𝑝 𝑝𝑜𝑖𝑛𝑡) = (
0.5 
−0.5 
−0.3

) ; 𝑇𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡) =  (
 0.5 
−0.5 
− 0.5

)  
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MATLAB is used to generate a trajectory between two positions specified by joint angles via the usage of two way-points 

in between the start and end positions. Generated trajectories between individual positions were connected and, in that 

manner, the entire trajectory was modelled and its validity verified by using MATLAB Robotics Toolbox. Figure 4.1 gives 

result of the simulation showing the points generated in the task space. The joint angles of the four positions are also 

highlighted in Table 1. 

 

Table 1: Joint Angles for the four Positions  

  

 1st 

Joint  

2nd 

Joint  

3rd 

Joint  

4th 

Joint  

5th 

Joint  

6th 

Joint  

Joint angle of starting position: 2.57 -0.7873 -1.2022 -3.1416 -1.9895 0.5716 

The joint angle of the transfer   position: 2.57 -0.1026 -0.5 -3.1416 -0.6026 0.5716 

Joint angle of removal position -0.5716 -0.1026 -0.5 -3.1416 -0.6026 -2.57 

The joint angle of the target position: -0.5716 -0.7873 -1.2022 -3.1416 -1.9895 -2.57 

*All angles are in radians 

 

The configuration of the points was such that the PUMA 560 manipulator was in the left arm, elbow down, wrist flip 

(rotate 180 degrees) configuration. This was specified essentially to get a particular solution for the inverse kinematics 

when using the toolbox's ikine6s function, which results in an analytical solution that avoids the errors associated with 

using the numerical solution alternative. 

 
Figure 3: The Robot Workspace showing the start and end points with two via points 

 

4.1.2 Coefficients of the Septic polynomial 

 

For the specific locations used in specifying the path for the trajectory, coefficients of the septic function used for 

trajectory modelling is shown as seen in Table 2. In this way, the resulting kinematic parameter values are determined by 

the values of the computed coefficients. The coefficients of the 7th degree polynomials of each of the 6 joints are shown 

(from left to right corresponding with the 1st to 6th joints). 
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Table 2: Coefficients of the Septic Polynomial used in trajectory modelling 

Coefficient 1st Joint  2nd Joint 3rd Joint 4th Joint 5th Joint 
6th 

Joint 

a 2.5700 -0.7873 -1.2022 -3.1416 -1.9895 0.5716 

b 0 0 0 0 0 0 

c 0 0 0 0 0 0 

d 0.0938 0.2301 0.2359 0.0000 0.4660 0.0938 

e -0.0750 -0.1008 -0.1033 -0.0000 -0.2041 -0.0750 

f 0.0169 0.0165 0.0170 -0.0000 0.0335 0.0169 

g -0.0015 -0.0012 -0.0012 0.0000 -0.0024 -0.0015 

h 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 

 
 

Figure 4: Septic polynomial trajectory Plots 
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4.3 Comparison of the Septic Polynomial function and Linear Segment with Polynomial Blend 

Comparisons of plots for the septic and linear segment with parabolic blend trajectories are made in this section. Angular 

displacement, velocity and acceleration are compared and plotted for both trajectories. The MATLAB Robotics Toolbox 

function mstraj builds a multisegmented, multi-axis trajectory from intermediate points. The mstraj function is used in 

generating the LSPB trajectory. 

 

 

 
Figure 5: Position Plot of Linear segment with polynomial blend (LSPB) 

 

Considering the angular displacement plot in figure 4 which gives the septic polynomial plot and that of figure 5 which 

provides the linear segment with polynomial blend (in this case a quintic polynomial blend is adopted which is the default 

multi-segment trajectory generator for the Robotics toolbox), the LSPB trajectory is characterised by over shoot at the 

beginning of the trajectory. This can be seen when joint 1 is considered as the value of the displacement is about 2.6 

radians, while that of the septic polynomial results in angular displacement of around 1.6 radians. Because the LSPB is an 

approximation approach, the issue of two via-points is over-constrained and the ability to reach each intermediate 

configuration is compromised in order to achieve continuous velocity. 

Figure 4 shows the computed values of velocity and acceleration based on the plots. The septic polynomial trajectory 

generated zero velocity and acceleration at the endpoints, while the linear segment with polynomial blend trajectory 

produced zero velocity at the beginning but failed to produce zero velocity at the endpoint. This provides a continuous jerk 

profile which is desirable for minimisation of jerk and an excellent trajectory tracking ability. A downside of the septic 

polynomial is that the time the velocity is at maximum is small compared to that of the LSPB.  

Considering the execution times of both trajectories, the tic toc function was used to evaluate roughly how fast the 

trajectory parameters were computed. Figures 6 and 7 show the result of the time taken. According to the result, the septic-

based trajectory was faster with an execution time of 0.325196 seconds compared to 0.380144 seconds of the LSPB. 

  
Figure 6: Execution time of the Linear Segment with Polynomial Blend Trajectory 
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Figure 7: Execution time of the Septic polynomial Trajectory 

 

5. CONCLUSION AND FUTURE WORK  

Existing and novel approaches for creating joint-space trajectories may all be applied independently to many joints at 

the same time.  Using a single polynomial for movement through a two-via points, this work implements a unique joint-

space trajectory creation technique. In order to maintain a smooth motion profile characterised by a continuous function, 

the robot does not have to halt at the intermediate points. As a replacement for the Linear segment with polynomial blend 

(LSPB), which is often used nowadays, a single seventh-order polynomial was proposed as there is no need for three 

segment function in the new technique. A septic polynomial is used in this study to produce null start and end-point 

velocities and accelerations. By placing two "control” via-points to the actual trajectory endpoints, a linear network 

comparable to resolving the velocity and acceleration boundary conditions independently is generated. Whenever the 

acceleration of a function changes, the corresponding jerk function (the time derivative of acceleration) will show endless 

spikes. Trajectory generation schemes emphasise that limitless jerk spikes are undesirable. Also, the generation of 

trajectories using 7th order polynomial was faster when compared to that of the LSPB as shown in the results section. 

Generally, the manipulator joint-space trajectory generation method employed in this paper is simple; as the septic 

polynomial employed is more apt for all joint movements with two via-points in point-to-point tasks.  In addition to 

keeping the jerk to a minimum, the seventh-degree polynomial accomplishes the dual via-point constrained motion with 

just a single function. 

To ensure that parameters like the jerk is continuous and bounded, trajectory optimisation becomes expedient. Some of 

these objective functions might be minimum energy consumption, trajectory time, dynamic load-carrying capacity, 

minimum jerk, singularities avoidance, manipulability, minimum gripping forces and so on. Essentially, when it comes to 

robotic manipulator trajectory optimisation, there are a number of criteria to consider. Solving these problems may profit 

from multi-objective optimisation, particularly when the objectives are conflicting[30]. The implication is that an 

improvement of one criterion might unnecessarily lead to the degradation of another. As such, the optimal compromise 

between them is selected and a trade-off made between competing objectives. In future, the generated trajectory would be 

optimised for better performance using a heuristic approach because of the computational complexity involved. premised 

on their ability to handle complex problems with little or no understanding of the search space. This ensures the lack of 

computational tractability involved in multi-objective trajectory optimisation is handled well. 

NOMENCLATURE  

Some abbreviations used in this research work include: 

B-spline: Basis Spline 

CNC: Computer Numerical Control 

DoF: Degrees of Freedom 

EOD: Explosive Ordinance Disposal 

LSPB: Linear Segment with Polynomial Blends 

PTP: Point-to-Point 

PUMA: Programmable Universal Machine for Assembly 
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